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Abstract

The discovery that delta-9-tetrahydrocannabinol
(Δ9-THC) is the primary psychoactive ingredient in
marijuana prompted research that helped elucidate
the endogenous cannabinoid system of the brain.
Δ9-THC and other cannabinoid ligands with agonist
action (CP 55,940, HU210, and WIN 55,212-2)
increase firing of dopamine neurons and increase
synaptic dopamine in brain regions associated with
reward and drug addiction. Such changes in cellular
processes have prompted investigators to examine
the conditioned rewarding effects of the cannabinoid
ligands using the place conditioning task with rats and
mice. As reviewed here, these cannabinoid ligands
can condition place preferences (evidence for rewar-
ding effects) and place aversions (evidence for aver-
sive qualities). Notably, the procedural details used
in these place conditioning studies have varied across
laboratories. Such variation includes differences
in apparatus type, existence of procedural biases,
dose, number of conditioning trials, injection-
to-placement intervals, and pretraining drug expo-
sure. Some differences in outcome across studies can
be explained by these procedural variables. For
example, low doses of Δ9-THC appear to have con-
ditioned rewarding effects, whereas higher doses
have aversive effects that either mask these reward-
ing effects or condition a place aversion. Throughout
this review, we highlight key areas that need further
research.
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reward

1. Introductory remarks

I
solation of brain cannabinoid (CB) receptors and
the endogenous CB compounds, arachidonyletha-
nolamide (anandamide) and 2-arachidonylglycerol

(2-AG), aswell as the development of exogenous ligands,
has enabled a growing body of research into the actions
of cannabinoids in thebrain and their effects onbehavior.
Because the primary active ingredient of marijuana is
cannabinoidergic and because the prevalence of marijua-
na use is a global concern, an area of particular interest is
how the CB system functions within the brain reward
system. Place conditioning is a common and potentially
useful task for evaluating the conditioned motivational
effects of a drug (1, 2). In this task, the animal (usually a
rat or mouse) has a distinct environment (context)
repeatedly paired with the drug of interest. There is an
alternate environment that differs along some stimulus
dimension(s) that is equally experienced, but not paired
with the drug.Using thismethod of Pavlovian condition-
ing, the conditioned appetitive (rewarding) or aversive
effects of a drug can be assessed. A conditioned place
preference (CPP) is inferredwhen in a choice test animals
spend more time in an environment that had been
previously paired with a drug stimulus compared to an
alternate environment. Such an outcome suggests that
the drug has some rewarding effects that entered into an
association with the paired environment. A conditioned
place aversion (CPA) is inferred when animals spend less
time in the drug-paired environment; this outcome is
taken to indicate an aversive effect of the drug (see later
for more detailed discussion).

Similar to other behavioral research, the parameters
used in place conditioning studies with CB ligands
vary widely across laboratories. With some drugs,
these variations in procedural details across labora-
tories seem to make little difference in the overall
conclusion regarding the motivational impact of the
drug. As detailed in Tzschentke’s (3) excellent review
of the place conditioning literature, studies with drugs
such as cocaine or amphetamine consistently report
CPP. The opiate drug heroin produces CPP, whereas
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the opioid antagonist naloxone consistently produces
CPA. Alternatively, place conditioning literature in-
volving the cannabinoid system seems to parallel the
place conditioning literature with nicotine. That is,
reports of no effect, CPA, and CPP with no clear
answer yet as to the relevant conditions under which
conditioned appetitive or aversive effects will be ex-
pressed. With this in mind, the purpose of the present
review was to discuss the role of cannabinoids within
the reward (motivation) system and to coalesce into
one paper the published research on place condition-
ing with cannabinoid agonists. In doing so, we hoped
to identify some critical variables that predict when a
cannabinoid agonist may have conditioned appetitive
versus conditioned aversive effect. Such information
would be important for guiding future research at-
tempting to identify the behavioral and neurochemical
processes underlying the conditioned motivational
effects of cannabinoid agonists.

2. Endogenous Cannabinoid System

2.1. Receptors
Cannabis has been used for thousands of years for its

mood-altering, hallucinogenic, and anesthetic proper-
ties. The neurological effects of the drug suggested a
central mechanism of action. Delta-9-tetrahydrocanna-
binol (Δ9-THC) was isolated as the primary psycho-
active component of cannabis (4). This compound was
then used to help elucidate the CB receptors (5). CB
receptors have been divided into two groups, CB1 and
CB2 receptors, on the basis of functionality and distri-
bution. CB1 receptors are found widely throughout the
brain and perform a variety of modulatory functions,
whereas the CB2 receptors have generally been asso-
ciated with the peripheral and central regulation of the
immune system (6, 7, 8). Furthermore, recent evidence
suggests non-CB receptor binding of endogenous
(internally produced) and exogenous (externally
produced) cannabinoid compounds (9, 10). The current
review will primarily focus on the CB1 receptor because
of its purported role involving the rewarding and re-
inforcing effects of drugs.

The distribution of CB1 receptors on brain neurons
in the striatumwas first described using in vitro receptor
autoradiography with the radioligand [3H]CP 55,940
(11). The receptors were initially found in high densities
(quantities) in various striatal areas including the
caudate putamen and the globus pallidus, as well as in
the substantia nigra. The subsequent development of
CB1 antibodies allowed for more specific cellular loca-
lization throughout the entire rat brain (12). Briefly,
a high density of CB1 receptors was found in the
hippocampus, cerebellum, striatum, and substantia
nigra. Receptors in the olfactory bulb, piriform cortex,

anterior part of the medial forebrain bundle, the cingu-

late cortex, amygdala, claustrum, and nucleus accum-

bens were found in moderate density. Finally, CB1

receptors were found in low density in the thalamus,

hypothalamus, periaqueductal gray, pons, medulla,

and the area postrema.
Importantly, receptor density does not necessarily

indicate signaling strength. CB receptors are G-protein
coupled (13),meaning the effects of receptor binding are
mediated by the second messenger pathways activated
by the G-protein. As such, binding can have a different
impact depending on localization. For instance, using
autoradiography and membrane saturation analyses in
male Sprague-Dawley rats, the average number of
G-proteins activated per bound CB1 receptor (i.e.,
amplification factor) was lowest in the frontal cortex,
cerebellum, hippocampus, and striatum (14). These are
regionswith generally high numbers of receptors.Mode-
rate amplification factors were found in the thalamus,
brainstem, amygdala, and sensorimotor cortex. Finally,
the hypothalamus had the highest amplification factor,
an area with low receptor density. These data suggest
that areas with low receptor density may enhance signal
strength by increasing the impact of G-proteins on
subsequent intracellular processes.

The location of these receptors on neurons is impor-
tant for understanding receptor function. CB1 receptors
have been found to be primarily localized presynapti-
cally on GABAergic neurons as determined by electro-
physiological analyses (15, 16). This presynaptic
localization suggests a modulatory role of endocan-
nabinoids. Notably, G-protein activation by bound
CB1 receptors reduces Ca2þ conductance (17) and
increases Kþ conductance (18). Both of these actions
have been linked to a process known as depolariza-
tion-induced suppression of inhibition (19). As dia-
gramed in Figure 1, activation of presynaptic CB1

receptors functions to inhibit subsequent neuro-
transmitter release from that presynaptic terminal
(20). Postsynaptic endogenous cannabinoid release
increases with increased postsynaptic excitation [(21)
see later]. The subsequent retrograde cannabinoid
signaling can attenuate the release of GABA, result-
ing in less inhibitory input into the synapse and
therefore further postsynaptic excitation.

2.2. Ligands
Cannabinoidergic ligands found naturally in the

body, including anandamide and 2-AG, are derived
fromarachidonicacid (22-25).Asdisplayed inFigure1,
these molecules are synthesized and released in a Ca2þ

dependentmanner followingmembraneexcitation (21,26).
They are then taken back into the cell by anandamide
or 2-AG transporters (26, 27) and broken down by
anandamide amidohydrolase (28) or fatty acid amide
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hydrolase (29) into constituent parts. These constituent
parts can be synthesized back into the signaling mole-
cules again when needed.

Experimentation with chemical analogues of Δ9-
THC yielded a number of potent exogenous CB ago-
nists, including CP 55,940, HU-210, andWIN 55,212-2
(30-35). Each of these agonists has since been used in
behavioral andneurochemical research to help elucidate
the localization and role of CB receptors in the brain.
For instance, since Δ9-THCmade a poor candidate for
radiolabeling, the synthesis of a more potent, more
stable ligand was required. CP 55,940 was just such a
molecule, and radiolabeled CP 55,940 was instrumental
in providing evidence of the CB receptor (5). CP 55,940
has also been used in behavioral assays such as drug
discrimination (36-38). HU-210 has been useful in
examining the stress response to drug withdrawal
(39, 40). In addition to a number of place conditioning
studies, WIN 55,212-2 has been used to examine the
role of cannabinoids in memory (41, 42). Furthermore,
an anandamide transport inhibitor, AM404, has also
been used to examine the effect of increased synaptic
availability of anandamide on behaviors ranging from
place conditioning to cocaine self-administration
(43-45).

3. Drug Reward Circuitry

3.1. Mesolimbic System
There are a number of excellent reviews of the reward

system and addiction (46-49). As such, we will only
provide a brief introduction of this system and refer the
interested reader to these reviews for more detail.
Although the mesolimbic dopamine pathway of the
ventral striatum is now perceived as being a small
portion of a much larger circuitry responsible for the
transition into compulsive drug-taking behavior (50),
the pathway is generally considered to be associated
with the rewarding properties of drugs and the initiation
of drug use (51). Drug administration and cues predic-
tive of drug administration activate that system
(52-57). The ventral tegmental area (VTA) has dopa-
minergic projections to the nucleus accumbens (NAcc)
and to the prefrontal cortex. Increase in dopamine in the
NAcc in particular has been associated with the reward-
ing effects of abused drugs because prevention of dopa-
mine transmission in this region typically reduces drug
self-administration [e.g. ref 58, but see ref 59] and
conditioned place preference (60, 61). The increased
dopamine can come about in a number of ways. For
instance, stimulants such asmethamphetamine, amphe-
tamine, and cocaine block the reuptake of dopamine in
the synapse, resulting in prolonged availability of the
neurotransmitter (62). Nicotine functions at pre- and
postsynaptic sites, modulating activation of the VTA
both directly on dopaminergic neurons and by poten-
tiating excitatory glutamate release (63, 64). Addition-
ally, dopaminergic neurons of the VTA receive
inhibitory GABAergic input from interneurons in the
VTA and from medium spiny neurons of the nucleus
accumbens (65). Heroin and morphine activate VTA
dopamine release into the NAcc via disinhibition of
GABA transmission in the VTA (66). These GABA
neurons are also the purported source for the effects of
cannabinoid compounds on the mesolimbic dopamine
system (see Figure 1).

3.2. Cannabinoid Modulation
Administration of Δ9-THC, CP 55,940, HU210, and

WIN 55,212-2 dose-dependently enhanced the firing of
dopamine neurons in the VTA (67-69) and increased
dopamine concentration in the NAcc shell (70) in rat
mesolimbic slices and in vivo. Further, administration of
the CB1 antagonist SR 141716 (rimonabant) prevented
these effects, indicating direct contribution of CB
receptor activation in the dopamine enhancement
(67, 69-71). Similar to the effects of opiates, the mecha-
nism of this increased dopamine release in the NAcc is
considered to be modulatory rather than a direct effect
on VTA dopamine neurons (72). As described earlier,
CB1 receptors are localized presynaptically, typically on

Figure 1. Cellular excitation causes the release of neurotransmitters
(1). Neurotransmitters bind to receptors causing postsynaptic ex-
citation (2) that triggers synthesis and nonvesicular release of
endocannabinoids (3). Activation of presynaptically localized
G-protein coupled cannabinoid receptors typically found on
GABAergic neurons (4) signals a reduction in Kþ and Ca2þ con-
ductance (5), thereby inhibiting presynaptic GABA release (6).
Inhibition of GABA release allows excitatory neurotransmitters
to have a greater impact on the postsynaptic membrane. Cannabi-
noid transporters are responsible for reuptake of the cannabinoids
in the synapse (7) where they are broken down by enzymes into their
constituent parts (8). More details can be found in the text.
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GABAergic neurons (16). Within the mesolimbic sys-
tem, there are GABAergic inputs onto VTA dopami-
nergic neurons that project to the NAcc (73). Using a
patch-clamp technique, administration of WIN 55,212-
2 or CP 55,940 was shown to depress GABA-mediated
inhibitory postsynaptic currents via a presynaptic in-
hibition of GABA release (74, 75). This modulatory
effect was due to the inhibition of Ca2þ and activation
of Kþ channels at presynaptic terminals attenuating
further GABA release (17, 18). The reduction of
GABA-mediated inhibitory postsynaptic currents on
VTA projections to the NAcc resulted in increased
transmission of dopamine in midbrain slices that was
also blocked by the administration of SR 141716 (75).
For further discussion of the role of endocannabinoid
modulation of neurotransmission with the mesolimbic
system, we refer the reader to the following reviews in
refs 76-79.

4. Place Conditioning

4.1. Typical Protocol
Environmental or situational cues that reliably co-

occurwith adrug canacquire the control ofdrug-related
behaviors through Pavlovian conditioning processes
(1, 80). Researchers can capitalize on this associative
learning to study the appetitive (rewarding) or aversive
effects of a drug. As noted in the IntroductoryRemarks,
one widely used task to do so is referred to as place
conditioning (1-3, 81). Although there are many varia-
tions of this method, in a typical place conditioning
experiment, animals are exposed to twodistinct contexts
(e.g., variations in floor texture, wall color, odor, etc.);
however, the drug is experienced only in one of the two
contexts. When the animal is given a subsequent choice
test with unrestricted access to both contexts in a drug-
free state, the drug-paired context (conditioned stimu-
lus; CS) now evokes either an approach (conditioned
place preference; CPP) or avoidance (conditioned place
aversion; CPA) conditioned response (CR) depending
on the nature of the previously experienced drug effects
(unconditioned stimulus; US).

4.2. Measurement Considerations
Determination of conditioning is typically based on

an increase (i.e., CPP) or decrease (i.e., CPA) in the time
spent in the paired context relative to the unpaired
context at test, the paired context before conditioning
(i.e., familiarization session), or to an untreated control.
In an apparatus constructed with two compartments,
not reporting time spent in the unpaired context is
acceptable practice because time spent in the paired
context necessarily subtracts from time spent in the
unpaired context (82). However, many laboratories
use three-compartment chambers, in which a center

compartment distinct from the other two is used as a
discrete starting place for choice tests (83). For some
researchers, a benefit of having this third compartment
is that it provides a novel context, thus detracting froma
potential novelty-seeking account of increased time
spent in the drug-paired compartment while in the
nondrug state (1). However, there is some argument
against the influence of this effect (2). In laboratories
using three-compartment chambers, not reporting time
spent in the unpaired context or a ratio measure that
includes this time is problematic for interpretation. That
is, an increase in time spent in the paired context may
reflect less time spent in the center compartment rather
than a shift from the unpaired to the paired compart-
ment (84). If this occurred, theremay still be greater time
spent in the unpaired than in the paired compartment.
Clearly, this is not a conditioned place preference, and
no conclusion regarding the conditioned rewarding
effects of the drug under study may be made.

4.3. Apparatus and Procedure Bias
When reading a paper on place conditioning, one

should be aware of whether the apparatus was con-
structed in such a way as to bias the behavior of the
animal. This bias in rats and mice can be accomplished
by using stimuli such as a dark chamber that evokes
approach behaviors. Alternatively, using bright illumi-
nation or widely space rod bars for flooring can evoke
avoidance behaviors (85). An important issue with
apparatus bias is that the unconditioned bias may shift
with repeated exposures which can complicate interpre-
tation of place conditioning results. That is, it becomes
unclear whether the drug treatment, the apparatus
exposure, or some combination of the two evoked the
change in choice behavior. One solution several inves-
tigators have tried to solve this problem is to include a
vehicle-vehicle control (86, 87). This control allows one
to determine how mere apparatus exposure shifts the
unconditioned apparatus bias. Unfortunately, this con-
trol does not provide an assessment of how drug
exposuremight interact with these unconditioned biases
still leaving some questions regarding the interpretation
of any purported place conditioning effect (1, 2).

Another important consideration is whether a biased
conditioning procedure was used in the study. This bias
refers to how and which compartment was assign to be
pairedwith the drug. A biased procedure is being used if
all subjects are assigned to receive the exact same
compartment (all drug pairing in white side) or if
subjects were assigned based on their behavior in a
preconditioning choice test (all drug parings in the
initially nonpreferred side). Using the initially preferred
compartment could result in a ceiling effect, preventing
detection of the development of the conditioned reward.
Using the nonpreferred compartment as the paired
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context allows for detectionof a change in compartment
choice; however, the mechanism of that response be-
comes unclear. Is time spent in the paired compartment
increasing because that compartment now had condi-
tioned rewarding value due to the pairing of the drug
effects or because the aversive qualities of the context
were decreased by further familiarization? The attenu-
ated aversion could be a result of unconditioned drug
effects, but they could also have developed without the
influence of the drug, thereby confounding the inter-
pretation of the results. Another bias of the condi-
tioning procedure often occurs when animals are
given two conditioning sessions per day. In order to
prevent lingering effects of (or possibly withdrawal
from) the drug treatment, all animals receive vehicle
for the first conditioning session and drug treatment
for the second conditioning session of the day. This
conditioning protocol confounds drug exposure and
training order.

A complete discussion of the implications of pro-
cedure and apparatus bias in place conditioning stu-
dies is outside the scope of this review. Thus, we refer
the reader to some articles that directly examine and/
or review the issue in more detail (1-3, 88, 89).
However, we would like to echo their general conclu-
sion and ask the reader to keep these issues inmind for
the following section that discusses the place condi-
tioning literature with cannabinoids. That is, to
obviate any interpretative issues, place conditio-
ning research should use unbiased procedures and
balanced apparatus construction.

5. Place Conditioning and Cannabinoid
Compounds

Unlike classic psychomotor stimulants such as am-
phetamine or cocaine that readily condition a place
preference at a number of doses and under a variety of
conditions, cannabinoid agonists show more mixed
results [(3, 81) see earlier]. The extant variation in
parameters used by different laboratories to assess place
conditioning with cannabinoidergic compounds com-
plicates interpretation and hence conclusions regarding
this system.Despite this difficulty, there are a number of
experimental variables that appear to impact the out-
come of some studies. These variables include the
specific compound and its dose, number of conditioning
trials, session length, injection-to-placement interval,
and pretreatment. Table 1 provides details about Δ9-
THC studies, and Table 2 provides details about
other cannabinoid compounds. Figure 2 provides the
chemical structures of each of these compounds. The
remainder of this review will discuss each of these
variables and the evidence for conditioned appetitive
or aversive effects of these ligands.

5.1. Drug Specificity
Cannabinoid ligands have distinct specificity and

potency. Initial interest in the cannabinoid system was
prompted by the psychotropic effects of Δ9-THC. Sub-
sequently developed synthetic cannabinoids are more
efficacious at CB receptors than Δ9-THC, which is a
partial agonist (90, 91). The two primary endogenous
cannabinoids in the brain, anandamide and 2-AG, have
different efficacies at CB1 receptors. Anandamide is a
partial agonist, whereas 2-AG is a full agonist (92, 93).
The synthetic cannabinoids HU-210 andWIN 55,212-2
are full agonists (90, 92). CP 55,940 has been described
as a full agonist (90) andas ahighefficacy partial agonist
(92) . Finally, the anandamide transport inhibitor, AM
404 selectively blocks the reuptake of anandamide,
allowing the signal to last longer in the synapse and
effectively serving as an agonist (43). Because of these
differences in action, behavioral differences in their
effects likely exist. As such, generalization of effects
across compounds should not be made. Rather, it will
be important to test these compounds within a given set
of behavioral parameters if firm conclusions are to be
made regarding the mechanism. For instance, Cheer
et al. (94) found CPA in rats with both Δ9-THC and
HU-210 using an unbiased apparatus and procedure.
Bortolato et al. (44) found similar CPP effects using
AM404 and WIN 55,212-2. Mallet and Beninger (95),
however, found no effect of anandamide, yet Δ9-THC
conditioned a place aversion.

5.2. Drug Dose
One of the primary considerations for behavioral

research is the dose of the drug. Very low doses of Δ9-
THCgenerally have limited rewarding effects and there-
fore often do not condition an approach response
relative to the vehicle. Conversely, high doses appear
to include an aversive quality often sufficient to com-
pete with or overshadow any rewarding effects and
thus condition an avoidance response. For instance,
rats conditioned with 0.015 mg/kg Δ9-THC display
choice behavior during testing indistinguishable from
that of the vehicle (96). Doses from 0.075 to 0.75 mg/kg
Δ9-THC, however, appear to condition a place prefer-
ence; 1 and 3 mg/kg show no difference from vehicle,
yet 6 mg/kg Δ9-THC conditions an aversion (96).
Time between training sessions appears to interact with
drug dose and has an impact on the conditioned effects
of Δ9-THC. When rats were trained with 24 h between
sessions, 1mg/kgΔ9-THChadno effect, and2 and 4mg/
kg Δ9-THC conditioned a place preference (97). How-
ever, when there were 48 h between sessions, 1 mg/kg
conditioned a place preference, and 2 and 4 mg/kg
Δ9-THC conditioned a place aversion. Thus, allowing
a longer wash-out period between training sessions
shifted the dose-effect curve to the left. The importance



r 2010 American Chemical Society 270 DOI: 10.1021/cn100005p |ACS Chem. Neurosci. (2010), 1, 265–278

pubs.acs.org/acschemicalneuroscience Review

of this wash-out period to the motivational effects of
Δ9-THC and the underlying processes deserve more

empirical attention. Another consideration with re-
gard to drug dose is the species of the subject. Mice

Table 1. Δ9-THC Place Conditioning Study Details
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generally have a higher rate of drug metabolism (98).
As such, mice are typically treated with higher doses

than rats. For instance, in place conditioning studies

using Δ9-THC, mice were treated with a range of

0.3 to 20 mg/kg, whereas rats were treated with

0.01 to 8 mg/kg (see Table 1). The lowest effective

dose (producing significant CPP or CPA) in mice was
1 mg/kg (86); in rats, that dose was more than ten
times lower, 0.075 mg/kg (96).

5.3. Temporal Considerations
The temporal relationship between the drug effects

and exposure to the to-be-paired compartment during

Table 2. CB Agonists and Transporter Inhibitor Place Conditioning Study Details
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the conditioning phase appears to be an important
variable in the cannabinoid place conditioning litera-
ture. Variation across studies in this relationship be-
tween the CS (paired compartment) and the US (i.e.,
relevant drug effects) might help explain some of the
discrepant results. In all conditioning tasks, there is a
temporal window in which the US must occur for
learning (i.e., CS-US association) to occur. Relation-
ships in which the CS onset occurs before the US onset
but with some overlap tends to be more conducive to
conditioning than a relationship where the US occurs
before or well after the CS (80). In the case of place
conditioning research with drug USs, drugs have many
physiological effects, and the duration and peak of these
effects may differ. Because drug effects are variable due
to pharmacokinetic and pharmacodynamic reasons,
careful consideration should be given to such factors
in the design of the experiment. For instance, if a
compound is metabolized quite quickly (e.g., ana-
ndamide), then conditioning sessions should be shorter
so that compartment exposure does not extend well
beyond that of the drug effects (99). Allowing this may
weaken conditioning through aprocess called extinction
(80). Alternatively, an enzyme inhibitor can be used to
slow ligand breakdown to extend the length of drug
effects (95, 100).

In addition, themore anUS is pairedwith theCS, the
stronger the conditioned association (80). The Maldo-
nado group used this idea to their advantage by extend-
ing the time of typical conditioning. In their studies that

examined 5 mg/kg Δ9-THC, mice acquired a CPA [(86,
87, 101, 102) see also (103)]. Each of these studies used
5 conditioning trials and 45-min sessions. However,
when three 30-min sessions had been used by the
group instead, there was no conditioned effect (104).
This latter study had less time in the compartment on
each placement, as well as fewer conditioning trials;
both variables are important for learning. Although
comparing across studies is fraught with difficulties,
there are some basic ideas that can be extrapolated
and suggest an important avenue for future parametric
research.

Similar to the effects of session length, with repeated
pairings the strength of the conditioned effect increases.
Therefore, conditioning with only a few trials may
not be sufficient to observe conditioning that would
be expressed with a greater number of trials (i.e.,
environment-drug pairings). Again, taking the neces-
sary caution of comparisons across studies, mice condi-
tionedwithΔ9-THC in five 30-min sessions developed a
CPA at 10 mg/kg as shown in a 15-min test (105).
However, mice only conditioned for three 30-min ses-
sions did not show a conditioned effect at 10 mg/kg but
did showaCPAat 20mg/kg (104). This pattern suggests
that the increased number of trials was required
for conditioning to be sufficiently strong before being
expressed as conditioned avoidance on the test day.
With repeated drug exposure, there is also the potential
for tolerance and sensitization to the drug effects.
Tolerance refers to a gradual decrease in the effects of
the drug; sensitization refers to an increase in the drug
effects with repeated exposure. Sensitization and toler-
ance to the effects of Δ9-THC have been reported
(106-109). Since increased pairings were required for
the development of CPA, an alternative account
suggests that sensitization of the aversive properties
may have developed.

As the discussion in this section implies, the injection-
to-placement interval (IPI) would have an impact on the
extent of place conditioning. Thus, allowing time topass
following the injection of the drug establishes a different
temporal relationship between the compartmentCSand
the drug US than immediate placement. Along
these lines, CPA in rats developed at two doses of CP
55,940 using an immediate IPI (37), but an intermediate
doseofCP55,940 conditioned aplace preferencewhen a
10min IPI was used (82). Furthermore, when rats had a
longer IPI using Δ9-THC (95), the aversive properties
of the drug were conditioned at lower doses than when
rats had a shorter IPI (96). Perhaps the early effects of
CP 55,940 are aversive and lengthening the IPI allows
those effects to diminish before the start of conditioning.
Conversely, perhaps the longer IPIwithΔ9-THCallows
the early rewarding effects to diminish, allowing
conditioning to occur with the aversive effects of the

Figure 2. Structures ofΔ9-THC (A), anandamide (B), HU-210 (C),
WIN 55,212-2 (D), CP 55,940 (E), and AM404 (F).
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drug. Of course, there were other variables that differed
between these studies (i.e., chamber/placement bias and
length of test session); therefore, a final conclusion
will need to await the conduction of the appropriate
parametric studies.

5.4. Pretreatment Effects
Drug pre-exposure purportedly attenuates the un-

conditioned aversive effects of the compound and hence
reveals CPP upon subsequent training. For instance,
mice given 1 mg/kg Δ9-THC in the home cage 24 h
before beginning conditioning developed CPP, whereas
mice not pretreated with Δ9-THC did not develop CPP
or CPA (86, 87, 110). Furthermore, pretreatment can
attenuate the aversive effects of Δ9-THC. Mice given 5
mg/kg Δ9-THC in the home cage before conditioning
did not develop the CPA shown by mice not given
pretreatment (87). These findings may be due to the
development of some tolerance to initial aversive drug
effects that are experienced in the home cage rather than
in the conditioning chamber. Considering the consistent
results of the Maldonado group, there is certainly clear
support for the efficacy of pre-exposure attenuating
some of the aversive properties of Δ9-THC in place
conditioning studies.

6. Concluding Comments

Place conditioning is useful in determining the con-
ditioned rewarding and/or aversive effects of cannabi-
nergic compounds. However, as stated previously, there
is much variability in the place conditioning apparatus
and protocol across laboratories studying the condi-
tioned appetitive or aversive effects of cannabinoids. As
detailed in this review, such variability likely affects the
outcome of the study and indicates a real need for
careful parametric research on key factors that might
affect conditioning with a particular ligand (dose, ses-
sion length, number of trials, injection-to-placement
interval, etc.). As recommended here and elsewhere
(2, 88, 89), place conditioning studies should avoid
procedural or apparatus biases. If achieved, then the
field will be better able to advance and have a more
coherent picture of the neurochemical system mediat-
ing the conditioned motivational effects of cannabi-
noids. Although the current review was focused on
the rewarding and aversive properties of cannabi-
noids, this system has a much broader applicability.
Cannabinoids have been shown to have a role in a
variety of behavioral processes; these include pain
(111), appetite, energy, nausea (112, 113), and stress
and mood (114). A better understanding of each of
these effects and how they may interact with each
other will no doubt benefit therapeutic outcomes
across these areas.
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